Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
Using the picture provided the forces are added together, because they are putting force on an object the same direction, thus the forces are added.
Answer:
A. Speed
Explanation:
A vector quantity is a quantity which has both magnitude and direction. Here in the given options, speed is a scalar quantity but not the vector quantity.
Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
The freezing point is the same as the melting point.
If it freezes at -58°C, hence the melting point is also <span>-58°C.</span>