Answer:
Each popcorn box is a rectangular prism. We can find the volume of a rectangular prism if we know its length, width, and height.
Hint #22 / 6
\begin{aligned} \text{Volume of Jeff's popcorn box} &= \text{length} \cdot \text{width} \cdot \text{height} \\\\ &= 10 \cdot 10 \cdot 20.5 \\\\ &= 100 \cdot 20.5 \\\\ &= \blueD{2050}\\\\ \end{aligned}
Volume of Jeff’s popcorn box
=length⋅width⋅height
=10⋅10⋅20.5
=100⋅20.5
=2050
Jeff's popcorn box can hold \blueD{2050} \text{ cm}^32050 cm
3
start color #11accd, 2050, end color #11accd, start text, space, c, m, end text, cubed of popcorn.
Hint #33 / 6
\begin{aligned} \text{Volume of George's popcorn box} &= \text{length} \cdot \text{width} \cdot \text{height} \\\\ &= 8 \cdot 8 \cdot 30 \\\\ &= 64 \cdot 30 \\\\ &= \maroonD{1920}\\\\ \end{aligned}
Volume of George’s popcorn box
=length⋅width⋅height
=8⋅8⋅30
=64⋅30
=1920
George's popcorn box can hold \maroonD{1920} \text{ cm}^31920 cm
3
start color #ca337c, 1920, end color #ca337c, start text, space, c, m, end text, cubed of popcorn.
Hint #44 / 6
Jeff's popcorn box can hold more popcorn because \blueD{2050}2050start color #11accd, 2050, end color #11accd is greater than \maroonD{1920}1920start color #ca337c, 1920, end color #ca337c.
Hint #55 / 6
Now let's find out how much more popcorn.
\blueD{2050} - \maroonD{1920} = 1302050−1920=130start color #11accd, 2050, end color #11accd, minus, start color #ca337c, 1920, end color #ca337c, equals, 130
Jeff's popcorn box can hold 130 \text{ cm}^3130 cm
3
130, start text, space, c, m, end text, cubed more popcorn than George's popcorn box.
Hint #66 / 6
The answers:
Jeff's popcorn box can hold more popcorn.
The bigger box holds 130 \text{ cm}^3130 cm
3
130, start text, space, c, m, end text, cubed more popcorn than the smaller box.
Step-by-step explanation: