<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Answer:
Explanation:
At constant pressure Thermal energy always moves from a greater energy level to a lesser energy level, laws of thermodynamics prove that.
Nature always likes to attain equilibrium either it's movement of heat energy or flow of water from higher region to lower region. The first and second law of thermodynamics are profe of that, the first law says that the total energy of universe is Constant. Energy can not be destroyed it always changes from one form to another, by work and heat. The second law explains why thermal energy moves from a greater energy level to a lesser energy level, it deals with the change in entropy of a system and surrounding and states heat flows from hot environment to cold environment.
<em><u>Thanks for joining brainly community!</u></em>
15 grams of NH3 can be dissolved
<h3>Further explanation</h3>
Given
50 grams of water at 50°C
Required
mass of NH3
Solution
Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility
- 1. Temperature:
- 2. Surface area:
- 3. Solvent type:
- 4. Stirring process:
We can use solubility chart (attached) to determine the solubility of NH3 at 50°C
From the graph, we can see that the solubility of NH3 in 100 g of water at 50 C is 30 g
So that the solubility in 50 grams of water is:
= 50/100 x 30
= 15 grams