Answer:
<em>a) 90 % of confidence interval is determined by</em>
<em></em><em></em>
<em>b) The 90% confidence intervals for the population mean </em>
(13.6572 , 22.3428)
<em></em>
Step-by-step explanation:
<u>Step(i):</u>-
Given data
Non residential college students 25 21 26 6 25 14 26 24 7 10 14
Mean of Non residential college students
x⁻ = ∑x/n
=
x⁻ = 18
now
Non residential
college students 'x' : 25 21 26 6 25 14 26 24 7 10 14
x - x⁻ : 7 3 8 -12 7 -4 8 6 -11 -8 -4
(x-x⁻)² : 49 9 64 144 49 16 64 36 121 64 16
S² = 63.2
S = √63.2 = 7.949
<u><em>Step(ii)</em></u>:-
<em>The 90% confidence the population mean commute for non-residential college students is between and miles.</em>
<em></em><em></em>
<em>Degrees of freedom </em>
<em>ν =n-1 =11-1 = 10</em>
<em>t </em><em></em>
<u><em>Step(iii):-</em></u>
<em>The 90% confidence the population mean commute for non-residential college students is between and miles.</em>
<em></em><em></em>
<em></em><em></em>
(18 - 4.3428 , 18 + 4.3428)
(13.6572 , 22.3428)
<u><em>Conclusion</em></u><em>:-</em>
<em>The 90% confidence the population mean commute for non-residential college students is between and miles.</em>
(13.6572 , 22.3428)
<em></em>