Answer:
B. Adding more protons to a positively charged body until the number of protons matches the number of electrons.
Explanation:
To get the answer you use the Law of Raoult.
Raoult's law states that the decrease of the vapor pressure of a liquid is proportional to the molar fraction of the solute.
ΔP = Pa * Xa
Here Pa = 0.038 atm
And Xa = N a / (Na + Nb), where Na is number of moles of A and Nb is number of moles of b
Na = mass of urea / molar mass of urea = 60 g / (molar mass of CH4N2O)
molar mass of CH4N2O = 12 g/mol + 4*1g/mol + 2*14 g/mol + 16 g/mol = 60 g/mol
Na = 60 g / 60 g/mol = 1 mol
Nb = mass of water / molar mass of water = 180g / 18g/mol = 10 mol
Xa = 1 mol / (10 mol + 1 mol) = 1/11 =0.09091
ΔP = Pb * Xa = 0.038 atm * 0.09091 = 0.0035 atm
Then, the final vapor pressure of water is Pb - ΔP = 0.038atm - 0.0035atm = 0.035 atm.
Answer: 0.035 atm
Answer:
58.443 g/mol
Explanation:
The molar mass of NaCl is the sum of the molar masses of the individual atoms:
Na: 22.989770 g/mol
Cl: 35.453 g/mol
The total molar mass is ...
NaCl: 58.443 g/mol
__
The molar mass does not depend on whether the material is in solution or in any other form.
The redox reaction is
Here
Calcium undergoes reduction, and acts as cathode
Lithium undergoes oxidation and acts as anode
The reduction potential of calcium is -2.87 V
The reduction potential of lithium is - -3.05 V
We know that
Ecell = Ecathode - Eanode
Ecell = -2.87 - (-3.05) = 0.18 V
Answer: UV Light is the highest!
Explanation:
Ultraviolet Light has the highest frequency between the three, Visible Light would stay in the middle since its in the middle of the spectrum, thus making Infrared the lowest.