(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965
Answer:
A
Explanation:
houses use alternating current source
Answer:
Currently in the united states using parallel system
Explanation:
because you can walk with the twomodes with internal combustion engine or running on electric power.
Answer:
Explanation:
To calculate the time it took the car to hit the ground, we use the formula
speed = distance/time
80 m/s = 300 m/time
time = 300/80
time = 3.75 secs
It must have taken the car 3.75 seconds to hit the ground
To determine the horizontal distance of the car before hitting the ground, the same formula will also be used but with the time obtained above (since that was the time it took before hitting the ground)
speed = distance/time
80 = distance/3.75
distance = 3.75 x 80
distance = 300 meters
C: the mechanical energy isn't conserved. Some energy was lost to friction.