Does this help?
When an object is
immersed in a fluid (in this case water, but may include both liquids and
gases) the fluid exerts an upward force on the object which is called buoyancy
force or <span>up-thrust. Archimedes’ Principle states that the buoyant
force (upward push or force) applied to an object is equal to the weight of the fluid that the object takes the space of by
that object. Thus when an object is
placed in water the rise in the water level is dictated by the mass of that
object.</span>
<span>
</span>
<span>So for example if you fill a bucket with water and you drop a stone in that bucket, if you measure the weight of the water that overflows from the bucket due to the stone being dropped into the bucket is equivalent to the pushing force that the water has on the stone (as the stone drops to the bottom of the bucket the water is pushing it to stay afloat but the rock is more dense than water and as such its downthrust exceeds water's upthrust).</span>
Answer:
the object will travel 0.66 meters before to stop.
Explanation:
Using the energy conservation theorem:
The work done by the friction force is given by:
so:
Show us the pictures I don't see it
If the object is kept in between the principle axis and the focus but some what nearer to the focus then we will get the enlarge,erect,and real image.
Work = (force) x (distance) = (450 N) x (4 m) = 1,800 joules
Power = (work) / (time) = (1,800 joules) / (2 sec) = 900 watts .