<u>Answer</u>
D) 3100 Liters
<u>Explanation</u>
To get the volume if the balloon you need to use the combined equation of the low of gases.
P₁V₁/T₁ = P₂V₂/T₂
(20×150)/(27+273) = (1×V₂)/(37+273)
3000/300 = V₂/310
10 = V₂/310
V₂ = 10 × 310
= 3100 Liters
Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:
Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:
Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
That is true imo not false
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring