Answer:
B. If an object is dropped from a height of 38 feet, the function h(t) = –16t2 + 38 gives the height of the object after t seconds.
Step-by-step explanation:
The equation that models the movement of the object is:
Where,
t: time
a: acceleration due to gravity
v0: initial speed
h0: initial height
Suppose that the object falls with zero initial velocity and from a height of 38 feet.
The equation that models the problem is:
Answer:
If an object is dropped from a height of 38 feet, the function h (t) = -16t2 + 38 gives the height of the object after seconds
Answer: If an object is dropped from a height of 38 feet, the function h (t) = -16t2 + 38 gives the height of the object after seconds
Step-by-step explanation:
Answer:
No.
The dresser's width(28.74in) is greater than the remaining free width(10in) in the room.
Step-by-step explanation:
First, convert the chest width into inches,
To find the excess width after fitting the bed in her room, we subtract the bed width from the room's width:
Since 10in is less than 28.74in, the dresser will not fit next to her bed.
Answer:
<em><u>In analytic geometry, using the common convention that the horizontal axis represents a variable x and the vertical axis represents a variable y, a y-intercept or vertical intercept is a point where the graph of a function or relation intersects the y-axis of the coordinate system.[1] As such, these points satisfy x = 0.</u></em>
Answer:
726.572699
Step-by-step explanation:
According to differentials
(x+Δx)³ = x³ + 3x²Δx + 3x(Δx)² + (Δx)³ (Using binomial expansion)
Using this formula to solve (8.99)³, this can also be written as;
(8.99)³ = (9-0.01)³ where
x = 9
Δx = -0.01
Substitute this vales into the differential expression above
(9+(-0.01))³ = 9³ + 3(9)²(-0.01) + 3(9)(-0.01)² + (-0.01)³
(9+(-0.01))³ = 729 + (243)(-0.01) + 27(0.0001) + (-0.000001)
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 726.572699
Hence 8.99³ = 726.572699 (Using differential)
Using calculator;
8.99³ = 726.572699