Wow ! This one could have some twists and turns in it.
Fasten your seat belt. It's going to be a boompy ride.
-- The buoyant force is precisely the missing <em>30N</em> .
-- In order to calculate the density of the frewium sample, we need to know
its mass and its volume. Then, density = mass/volume .
-- From the weight of the sample in air, we can closely calculate its mass.
Weight = (mass) x (gravity)
185N = (mass) x (9.81 m/s²)
Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u>
-- For its volume, we need to calculate the volume of the displaced water.
The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³. So the volume of the
displaced water (in cm³) is the same as the number of grams in it.
The weight of the displaced water is 30N, and weight = (mass) (gravity).
30N = (mass of the displaced water) x (9.81 m/s²)
Mass = (30N) / (9.81 m/s²) = 3.058 kilograms
Volume of displaced water = <u>3,058 cm³</u>
Finally, density of the frewium sample = (mass)/(volume)
Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)
================================================
I'm thinking that this must be the hard way to do it,
because I noticed that
(weight in air) / (buoyant force) = 185N / 30N = <u>6.1666...</u>
So apparently . . .
(density of a sample) / (density of water) =
(weight of the sample in air) / (buoyant force in water) .
I never knew that, but it's a good factoid to keep in my tool-box.
Visual aids are tools that help to make an issue or lesson clearer or easier to understand and know (pictures, models, charts, maps, videos, slides, real objects etc.). ... Visual aids are those devices which are used in classrooms to encourage students learning process and make it easier and interesting.
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,
Our values are given as,
Re-arrange the equation to find the first ratio of rates we have:
The second ratio of rates is
Explanation:
R = V/I
Since this is an I/V graph, the greater the slope of the line the lower the R value.
Hence we find the line with the smallest slope, which is conductor M.
Answer:
B
Explanation:
If you cross of what you don't think are the answers then it makes it easier to narrow it down to what the answers are.
Hope this helps!