Answer:
Step-by-step explanation:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste him so he can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
Simplifyiing
the greatest common factor is 3 so
3x - 9y + 12 = 3(x - 3y + 4)
If it takes one person 4 hours to paint a room and another person 12 hours to
paint the same room, working together they could paint the room even quicker, it
turns out they would paint the room in 3 hours together. This can be reasoned by
the following logic, if the first person paints the room in 4 hours, she paints 14 of
the room each hour. If the second person takes 12 hours to paint the room, he
paints 1 of the room each hour. So together, each hour they paint 1 + 1 of the 12 4 12
room. Using a common denominator of 12 gives: 3 + 1 = 4 = 1. This means 12 12 12 3
each hour, working together they complete 13 of the room. If 13 is completed each hour, it follows that it will take 3 hours to complete the entire room.
This pattern is used to solve teamwork problems. If the first person does a job in A, a second person does a job in B, and together they can do a job in T (total). We can use the team work equation.
Teamwork Equation: A1 + B1 = T1
Often these problems will involve fractions. Rather than thinking of the first frac-
tion as A1 , it may be better to think of it as the reciprocal of A’s time.
World View Note: When the Egyptians, who were the first to work with frac- tions, wrote fractions, they were all unit fractions (numerator of one). They only used these type of fractions for about 2000 years! Some believe that this cumber- some style of using fractions was used for so long out of tradition, others believe the Egyptians had a way of thinking about and working with fractions that has been completely lost in history.
Answer:
1. y = -x + 3
2. y = x - 3
3. y = 3x + 1
4. y = -3x - 3
Step-by-step explanation:
Hello! sorry, I just saw your message on the question I answered before asking for help so here you go, these are the answers, hope this helps.
Pls mark me brainliest if you can:)
Answer:
Step-by-step explanation:
Let
x----> the length of the rectangular garden
y---> the width of the rectangular garden
we know that
The perimeter of the rectangle is equal to
we have
so
simplify
------> equation A
Remember that the area of rectangle is equal to
----> equation B
substitute equation A in equation B
----> this is a vertical parabola open downward
The vertex is a maximum
The y-coordinate of the vertex is the maximum area
The x-coordinate of the vertex is the length side of the rectangle that maximize the area
using a graphing tool
The vertex is the point
see the attached figure
so
Find the value of y
The garden is a square
the area is equal to
----> is equal to the y-coordinate of the vertex is correct