Answer:
v = 13.79 m/s
Explanation:
given,
mass of ball = 110 g
height = 11 m
ball is released from = 1.3 m
minimum speed = ?
using conservation of energy
Potential energy is conserved in the form of kinetic energy
v = 13.79 m/s
<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
Answer:
Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that
When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows
where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows
At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.