Use the Pythagoras for the magnitude and the tan^-1 x = -1 for the angle
displacement = 4^2 + 4^2 = 32 = 4 sqrt(2) = 5.65 km
angle is 135 degrees.
Explanation:
The charge on the electron is,
The electric field at a distance r from the electron is :
Where
k is the electrostatic constant,
We know that the electric field lines starts from positive charge and ends at the negative charge. Also, for a positive charge the field lines are outwards while for a negative charge the field lines are inwards.
So, the correct option is " the electric field is directed toward the electron and has a magnitude of . Hence, this is the required solution.
it will experience great force
The answer is D. The Ossicles
Answer:
i. 15.6 m/s
ii. I = 1.44 KNs
Explanation:
The impulse, I, on a body is the product of force applied on it and the time it acts.
i.e I = F x t
Impulse is sometimes expressed as the change in momentum of a body. It is measured in Ns.
i. mass, m, of the player = 92 kg
initial velocity of the player, u = 9.4 m/s
final velocity of the player, v = 6.2 m/s
Since he bounces back on hitting the pole, then the sign of initial and final velocities are of opposite sign.
So that,
change in velocity of the player = final velocity - initial velocity
= 6.2 - (-9.4)
= 6.2 + 9.4
= 15.6 m/s
change in velocity of the player is 15.6 m/s
ii. Impulse, I = m(v - u)
= 92 x 15.6
= 1435.2
Impulse on the player is 1.44 KNs.