Answer:
a.
b.
c.
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)
μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.
c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:
As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
Specific heat capacity is an intensive property and does not depend on sample size.
Explanation:
Answer:
Explanation:
Given that,
Frequency of radio signal is
f = 800kHz = 800,000 Hz.
Distance from transmitter
d = 8.5km = 8500m
Electric field amplitude
E = 0.9 V/m
The average energy density can be calculated using
U_E = ½•ϵo•E²
Where ϵo = 8.85 × 10^-12 F/m
Then,
U_E = ½ × 8.85 × 10^-12 × 0.9²
U_E = 3.58 × 10^-12 J/m²
The average electromagnetic energy density is 3.58 × 10^-12 J/m²
Answer:
14 N
Explanation:
The tension in the second string is puling both the masses of 20 kg and 8 kg with acceleration of 0.5 m s⁻²
So tension in the second string = total mass x acceleration
= 28 x .5 = 14 N . Ans..
I think the correct answer from the choices listed above is the first option. The statement that best describes the state of metals when they are at room temperature would be that most <span>nonmetals are gaseous, but some are liquid or solid. Hope this answers the question. Have a nice day.</span>