Answer:
4Fe + 3O2 + 6H2O → 4Fe(OH)3
Explanation:
The chemical formula for rust is Fe2O3 and is commonly known as ferric oxide or iron oxide. The final product is a series of chemical reactions simplified below as- The rusting of the iron formula is simply 4Fe + 3O2 + 6H2O → 4Fe(OH)3. The rusting process requires both the elements of oxygen and water.
From Q = mcΔΤ, the specific heat capacity, c, of the metal that was cooled is c = Q/mΔT = (-769 J)/(46.4 g)(30.0 °C - 101.0 °C) = 0.233 J/g °C. From the table, it appears that this is the specific heat capacity of silver. So, the metal is most like silver.
Note: The value for Q was written as a negative value in the equation as heat energy was given off by the metal when the metal was cooled (from the metal’s point of view, it’s losing heat energy).
1) Use the fact that 1 mol of gas at STP occupies 22.4 liter
=> 1 mol / 22.4 l = x / 0.125 l => x = 0.125 l * 1 mol / 22.4 l = 0.00558 mol
2) Now use the molar mass of the gas
molar mass of CO2 ≈ 44 g / mol
Formula: molar mass = mass in grams / number of moles =>
mass in grams = molar mass * number of moles = 44 g/mol * 0.00558 moles
mass = 0.246 g
Answer: 0.246 g
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.