Answer:
Vehicles typically employ both hydraulic shock absorbers and springs or torsion bars. In this combination, "shock absorber" refers specifically to the hydraulic piston that absorbs and dissipates vibration.
Explanation:
hope this helps
Answer:
Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:
By knowing this, we can estimate the total current through the circuit,:
So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:
So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:
Answer:
1500 divided by 150(15m x 10m/s^2) = 10
If <em>v(t)</em> is speed measured in meters per second (m/s), and <em>t</em> is time measured in seconds (s), then the constants <em>A</em> and <em>B</em> in
<em>v(t)</em> = <em>At</em> ³ - <em>Bt</em>
must have units of m/s⁴ and m/s², respectively; otherwise, the equation is dimensionally inconsistent.
[m/s] = <em>A</em> [s]³ - <em>B</em> [s]
[m/s] = [m/s⁴] [s]³ - [m/s²] [s]
[m/s] = [m/s] - [m/s]
[m/s] = [m/s]