Answer:
-2.83 m/s²
Explanation:
- Initial velocity (u) = 34 m/s
- Final velocity (v) = 17 m/s
- Time taken (t) = 6 seconds
❖ Acceleration is defined as the rate of change in velocity with time.
→ a = (v - u)/t
- v denotes final velocity
- a denotes acceleration
- u denotes initial velocity
- t denotes time
→ a = (17 - 34)/6 m/s²
→ a = -17/6 m/s²
<h3>→ Acceleration = -2.83 m/s²</h3>
(Minus sign implies that the velocity is decreasing.)
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:
where k is Coulomb's constant, and are the charges and d is the distance between the charges.
Working a little the equation, we can take:
And this equation will give us the distance between the charges. Taking the values of the problem
(the force has a minus sign, as its attractive)
And this is the distance between the charges.
Radiant energy is the energy of electromagnetic and gravitational radiation