Sorry I didn't see this before...
Okay, I see two major problems with this student's experiment:
1) Nitric acid Won't Dissolve in Methane
Nitric acid is what's called a mineral acid. That means it is inorganic (it doesn't contain carbon) and dissolves in water.
Methane is an organic molecule (it contains carbon). It literally cannot dissolve nitric acid. Here's why:
For nitric acid (HNO3) to dissolve into a solvent, that solvent must be polar. It must have a charge to pull the positively charged Hydrogen off of the Oxygen. Methane has no charge, since its carbon and hydrogens have nearly perfect covalent bonds. Thus it cannot dissolve nitric acid. There will be no solution. That leads to the next problem:
2) He's Not actually Measuring a Solution
He's picking up the pH of the pure nitric acid. Since it didn't dissolve, what's left isn't a solution—it's like mixing oil and water. He has groups of methane and groups of nitric acid. Since methane is perfectly neutral (neither acid nor base), the electronic instrument is only picking up the extremely acidic nitric acid. There's no point to what he's doing.
Does that help?
The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers
<span>Answer:
The temperature doesn't affect the evaporation rate, but affects on how much of water a parcel of air can contain when saturated which is known by the absolute humidity. Hurricanes are usually happening when the temperature of the sea water west of the Cape Verde islands is over 27 degrees Celsius. If ahead of the path of a hurricane, the sea water temperature drops then it will be less moisture in the air and perhaps the hurricane will fade out. But it is not as simple. How strong a tropical storm is is relative to the difference of temperture between ground level and the top of the troposphere. The greater the difference, the faster the air will rise and the deeper the pressure will be, forcing surrounding air to rush in, thus forming a hurricane force wind. Then there is the fact that the wet adiabatic lapse rate is about half that of dry air. It means that rising moist air cools down slower and therefore rises higher. Hence water is the true fuel of bad weather. But it can't be isolated from the fact that the difference of temperature must be great too. What we often forget is that the tropopause (the border to the stratosphere) is much higher over the equator and therefore, much colder than e.g. the poles.</span>
Yes it does ! The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided. The boiling point is higher than room temperature.
Not that simple but there are ways. Just make sure your hands can handle it