Answer:
1,3,5
Explanation:
i think maybe dont come at me
The formula for average speed is S=D/T
1. S=72m/37s
Divide
S= 1.94
Kira's average speed is 1.94m/s.
2. S=7.5km / 1.5h
S=5
Your average speed is 5km/h
3. S=1260km/3.5h
S=360
The airplanes average speed is 360km/h
Answer:
Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Explanation:
Given;
power of radio transmitter, P = 63.2 kW = 63200 W
distance of transmission, r = 30.5 km
Intensity of the transmitted radio wave is calculated as follows;
where;
I is the intensity of the transmitted radio wave
Substitute the given values and calculate the intensity of the transmitted radio wave;
Therefore, Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Answer:
The length of open-open pipe needed is 6.23 m
The length of open-close pipe needed is 3.11 m
Explanation:
Fundamental frequency for standing wave mode of an open- open pipe is given by
where v is the velocity and L is the length
The length of open-open pipe needed is
Fundamental frequency for standing wave mode of an open- close pipe is given by
The length of open-close pipe needed is
Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).