Answer:
u₂ = 32.29 m/s
Explanation:
m₁ = 12 kg
u₁ = 0 m/s
m₂ = 417 g = 0.417 kg
d = 15 cm = 0.15 m
μ = 0.40
u₂ = ?
It is an inelastic collision. After the collision
We can apply ∑ F = m*a for the system (m₁ + m₂)
where m = m₁ + m₂ = 12 kg + 0.417 kg = 12.417 kg
then
∑ F = - Ff = m*a
if
Ff = μ*N = μ*W = μ*(m*g) = μ*m*g
⇒ - μ*m*g = m*a ⇒ a = - μ*g = - 0.40*9.8 m/s² = - 3.92 m/s²
⇒ a = - 3.92 m/s²
Since vf = 0 m/s (for the system)
we use the equation
vf² = vi²+2*a*d ⇒ 0 = vi²+2*a*d ⇒ vi = √(-2*a*d)
⇒ vi = √(-2*(- 3.92 m/s²)*0.15 m)
⇒ vi = 1.0844 m/s
we can use the equation for an inelastic collision
m₁*u₁ + m₂*u₂ = (m₁ + m₂)*vs
since m = m₁ + m₂; u₁ = 0 m/s and vs = vi
we have
m₁*0 + m₂*u₂ = m*vi
⇒ u₂ = m*vi / m₂
⇒ u₂ = 12.417 kg*1.0844 m/s / 0.417 kg
⇒ u₂ = 32.29 m/s (→)