By Newtons Third law this is an action reaction pair of force
So the momentum is the same
30*20=50*x where x is velocity
x= 12m/s
direction is towards left since they act in opposite directions
CORRECT ANSWER:
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
STEP-BY-STEP EXPLANATION:
The complete question from book is
According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.
c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.
d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.
e- None of the other answer options is correct.
Answer:
49.3 N
Explanation:
Given that Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in the rope?
The weight of the bucket of water = mg.
Weight = 4.25 × 9.8
Weight = 41.65 N
The tension and the weight will be opposite in direction.
Total force = ma
T - mg = ma
Make tension T the subject of formula
T = ma + mg
T = m ( a + g )
Substitutes all the parameters into the formula
T = 4.25 ( 1.8 + 9.8 )
T = 4.25 ( 11.6 )
T = 49.3 N
Therefore, the tension in the rope is 49.3 N approximately.
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation: