Answer:
c)
V_local = -x/t^2
V_convec = x/t^2
d)
a = V_local + V_convec = 0
e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases
Explanation:
Hi!
You can see plots for a) and b) attached on this document
c)
The local acceleration is just teh aprtial derivative of the velocity with respect to t:
And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:
d)
Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign
e)
This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases, the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero
I’m not sure maybe attach a image or something
Answer:
a) , b) , c) , , d)
Explanation:
a) The gravitational force exerted by the Earth on the satellite is:
b) The centripetal acceleration of the satellite is:
c) The speed of the satellite is:
Likewise, the angular speed is:
d) The period of the satellite's rotation around the Earth is: