<span>We use the formula PV = nRT. P = 758 torr = 0.997 atm. V = 3.50 L. T = 35.6 C = 308.15 K. R = 0.0821. Rearranging the equation gives up n = PV/Rt and we get .0138 moles of butane. Mass of 0.0138 moles of butane = .0138 x 58.12 = 8.02g.</span>
Answer:
24g of NaOH are required
Explanation:
Molarity, M, is an unit of concentration widely used in chemistry defined as the ratio between moles of solute (In this case, NaOH), and volume of solution in liters.
We can find the moles of NaOH and its mass with the volume and desired concentration as follows:
<em>Moles NaOH:</em>
400.0mL = 0.400L * (1.50mol / L) = 0.600 moles NaOH
<em>Mass NaOH -Molar mass: 40.0g/mol-:</em>
0.600 moles * (40.0g / mol) =
<h3>24g of NaOH are required</h3>
Answer:
decreased by a factor of 10
Explanation:
pH is defined in such a way that;
pH= −log10(H)
Where H represents the concentration of Hydronium or Hydrogen ions
Given that pH is changed from 1 to 2,
By rearranging the above formula , we get 10−pH = H
- if pH=1,H=10−1=0.1M
- if pH=2,H=10−2=0.01M
Therefore, 0.1/0.01 = 10 and 0.1 > 0.01
Hence, the concentration of hydronium ions in the solution is decreased by a factor of 10
Answer:
w = -531 kJ
1. Work was done by the system.
Explanation:
Step 1: Given data
- Heat gained by the system (q): 687 kJ (By convention, when the system absorbs heat, q > 0).
- Change in the internal energy of the system (ΔU°): 156 kJ
Step 2: Calculate the work done (w)
We will use the following expression.
ΔU° = q + w
w = ΔU° - q
w = 156 kJ - 687 kJ
w = -531 kJ
By convention, when w < 0, work is done by the system on the surroundings.
Answer:
Solid:- Particles vibrate in a rigid structure and do not move relative to their neighbors.
Liquid:- It takes the shape of its container but keeps a constant volume.
Gas:- Particles move rapidly and independently of each other.
Plasma:- It is the most common state of matter in the universe.
Explanation:
Solids are one of the three states of matter and, unlike liquids or gases, they have a definite shape that is not easy to change. Different solids have particular properties such as stretch, STRENGTH, or hardness that make them useful for different jobs.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure
Gas is a state of matter that has no fixed shape and no fixed volume. Gases have lower density than other states of matter, such as solids and liquids. When more gas particles enter a container, there is less space for the particles to spread out, and they become compressed. The particles exert more force on the interior volume of the container.
A plasma is a gas that has been energized to the point that some of the electrons break free from, but travel with, their nucleus.