Answer:
C₂H₄O₂ and NaC₂H₃O₂ are reactants.
Explanation:
Word equation:
Acetic acid + sodium acetate → sodium diacetate
Chemical equation:
C₂H₄O₂ + NaC₂H₃O₂ → C₄H₇NaO₄
This is a synthesis reaction in which simple reactants combine to form complex product.
This is also balanced chemical equation because there are equal number of atoms of all elements on both side of equation. Thus it follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer:
See detailed answer with explanation below.
Explanation:
Valence electrons are electrons found on the outermost shell of an atom. They are the electrons in an atom that participate in chemical combination. Recall that the outermost shell of an atom is also referred to as its valence shell. Let us consider an example; if we look at the atom, sodium-11, its electronic configuration is 2,8,1. The last one electron is the valence electron of sodium which is found in its outermost or valence shell.
Positive ions are formed when electrons are lost from the valence shell of an atom. For instance, if the outermost electron in sodium is lost, we now form the sodium ion Na^+ which is a positive ion. Positive ions possess less number of electrons compared to their corresponding atoms.
Negative ions are formed when one or more electrons is added to the valence shell of an atom. A negative ion possesses more electrons than its corresponding atom. For example, chlorine(Cl) contains 17 electrons but the chloride ion (Cl^-) contains 18 electrons.
In molecular compounds, a bond is formed when two electrons are shared between the bonding atoms. Each bonding atom may contribute one of the shared electrons (ordinary covalent bond) or one of the bonding atoms may provide the both shared electrons (coordinate covalent bond). The shared pair may be located at an equidistant position to the nucleus of both atoms. Similarly, the electron may be drawn closer to the nucleus of one atom than the other (polar covalent bond) depending on the electro negativity of the two bonding atoms.
The electrons are shared in order to complete the octet of each atom by so doing, the both bonding atoms now obey the octet rule. For example, two chlorine atoms may come together to form a covalent bond in which each chlorine atom has an octet of electrons on its outermost shell.
The pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
<h3>How to calculate pressure?</h3>
The pressure of an ideal gas can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
According to information in this question;
- T = 25°C = 25 + 273 = 298K
- V = 244.6mL = 0.24L
- R = 0.0821 Latm/Kmol
P × 0.24 = 1 × 0.0821 × 298
0.24P = 24.47
P = 24.47/0.24
P = 101.94atm
Therefore, the pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
Learn more about pressure at: brainly.com/question/11464844
C. Summarizing
He read the book, then summarized what he read in his report.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K