Answer:
P(c) = 0,0833 or P(c) = 8.33 %
Step-by-step explanation:
Comlementary angles a thse which sum s 90⁰. xamles of complementay angles ae:
75⁰ and 15⁰
80⁰ and 10⁰
5⁰ and 85⁰
and s forth
From the group of given angles:
30⁰ , 60⁰, 120⁰ , 150⁰
only the couple 30⁰ , 60⁰ meet the request, that means are complementary (the sum is 90⁰).
So we only have one chance of chossing such a couple. The number of favorable outcomes is 1 )
Now we have 4 slips of paper (that means 4 elements, and the quantity of different pairs we can get combining these 4 elements is given by the combination of four (4) elements in group of two. That is:
C₄,₂ = 4! / ( 4 - 2 )! ⇒ C₄,₂ = 4*3*2*1 / 2*1 ⇒ C₄,₂ = 4*3
C₄,₂ = 12 (Total number of outcomes)
Then the probability of chossing two slips of paper that the measure are complementary is:
P(c) = 1 / 12 ⇒ P(c) = 0,0833 ⇒ P(c) = 8.33 %