Answer: 0.0826mol
PV=nRT
n=PV/RT
n=(1atm)(2.1L)/(310K)(0.082057L*atm/mol*K)=0.0826mol
Answer : The mass of of water present in the jar is, 298.79 g
Solution : Given,
Mass of barium nitrate = 27 g
The solubility of barium nitrate at is 9.02 gram per 100 ml of water.
As, 9.02 gram of barium nitrate present in 100 ml of water
So, 27 gram of barium nitrate present in of water
The volume of water is 299.33 ml.
As we know that the density of water at is 0.9982 g/ml
Now we have to calculate the mass of water.
Therefore, the mass of of water present in the jar is, 298.79 g
Answer:
it is iodine it seems very right
Answer:
5-chloro-2-methylcyclohexanol
Explanation:
There is no structure for the compound, but we can analyze the proposed options using the IUPAC rules to name organic compounds.
IUPAC rules state that to name an organic compound, first we have to identify the priorities for the functional groups present in the compound. <em><u>In this case, the priority functional group is the alcohol group</u></em>, <u><em>so we will start the counting of the carbons in this group.</em></u> Then, the counting of carbon atoms is followed by the next substituents so they have the lowest possible numbers, <em><u>in this case, we can assign the number 2 to the methyl group and 5 to the chloride group</u></em>, and name the compound in alphabetical order, using commas to separate the words from the numbers and with no space between the words.
Since the other options involve: <u>high countings for the susbtituents groups (</u><u>3</u><u>-chloro-</u><u>6</u><u>-methylcyclohexanol)</u>, <u>wrong assignation of priority functional group (</u><u>1-chloro</u><u>-4-methylcyclohexanol), wrong sequence of counting in the compound (</u><u>2-methyl-3-chloro</u><u>cyclohexanol) and no alphabetical order to name the compound (2-</u><u>methyl</u><u>-5-</u><u>chloro</u><u>cyclohexanol), </u><u>the correct option is:</u>
5-chloro-2-methylcyclohexanol
Have a nice day!
There are multiple factors that contribute to the cost of a mineral.
First of all is the demand or application, which will be related to its
physical properties. For example, nontarnishing metals like gold are
held in high value for their appearance. Second is the supply of the
mineral, those that only have a small quantity in the earth's crust are
likely to be more expensive. Third is the cost of extraction and
manufacturing. Some minerals may be abundantly found, but may be
distributed over a wide area, meaning that it is still expensive to mine
and transport.