Answer:
The refractive index of glass,
Solution:
Brewster angle is the special case of incident angle that causes the reflected and refracted rays to be perpendicular to each other or that angle of incident which causes the complete polarization of the reflected ray.
To determine the refractive index of glass:
(1)
where
= refractive index of glass
= refractive index of glass
Now, using eqn (1)
Given:
distance from the projector lens to the image, di
projector lens focal length, f
distance from the transparency to the projector lens, do
thin lens equation: 1/f = 1/di + 1/do
do = 4 inches
di = 8 feet
convert feet to inches, for uniformity.
1 foot = 12 inches
8 feet * 12 inches/ft = 96 inches
1/f = 1/96 inches + 1/4 inches
Adding fractions, denominator must be the same.
1/f = (1/96 * 1/1) + (1/4 * 24/24)
1/f = 1/96 + 24/96
1/f = 25/96
to find the value of f, do cross multiplication
1*96 = f * 25
96 = 25f
96/25 = f
3.84 = f
The focal length of the project lens is 3.84 inches
Explanation:
Formula which holds true for a leans with radii and and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction . Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.
Hence, image distance can be calculated as follows.
= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.
Answer:
Many types of scientific equipment are used to perform different functions in the science lab. Which of the following combinations of equipment would be needed to bring one liter of water to 85°C? a. ... Various pieces of safety equipment are used in the lab to provide protection against injury.
Explanation: