In order to find the final velocity of the skier and the trash can lid, we may apply the principle of conservation of momentum, which states that the total momentum of a system remains constant. Mathematically, in this case:
m₁v₁ + m₂v₂ = m₃v₃
Where m₃ and v₃ are the combined mass and velocity.
75*3 + 10*2 = (75 + 10)*v₃
v₃ = 2.88 m/s
The final velocity is 2.88 m/s
Answer: The ray that passes through the focal point on the way to the lens will refract and travel parallel to the principal axis. ... All three rays should intersect at exactly the same point.
Explanation: Once these incident rays strike the lens, refract them according to the three rules of refraction for converging lenses.
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
In this item, we are asked to determine the speed of the bobsled given the distance traveled and the time it takes to cover the certain distance. This can mathematically be expressed as,
speed = distance / time
Substituting the given values in this item,
speed = (113 m) / (29 s)
speed = 3.90 m/s
<em>ANSWER: 3.90 m/s</em>