The Gay-Lussac's law or Amonton's law states that the pressure of a given amount of a gas is directly propotional to its temperature if its volume is kept constant .
P∝T
and
The Charles Law states that volume of given amount of gas at constant pressure is directly propotional to temperature.
V∝T
So, by Gay-Lussac's law if we increase the temperature the Pressure will increase and by Charles Law, if we increase the temperature the volume will increase.
Therefore, if the temperature of gas increases either the pressure of the gas, the volume of the gas, or both, will increase.
Hence,
Answer is option C
It is required an infinite work. The additional electron will never reach the origin.
In fact, assuming the additional electron is coming from the positive direction, as it approaches x=+1.00 m it will become closer and closer to the electron located at x=+1.00 m. However, the electrostatic force between the two electrons (which is repulsive) will become infinite when the second electron reaches x=+1.00 m, because the distance d between the two electrons is zero:
So, in order for the additional electron to cross this point, it is required an infinite amount of work, which is impossible.
The sun?? It stays in one spot, but from our point of view, it travels around the earth...
Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved
The spring constant of the net is 20130.76 N
From Hooke's Law
The net would strech 0.03167 m
If h = 35 m
From energy conservation
Solving the above equation we get
The compression of the net is 1.52 m