You need to find the whole molar mass of the compound using the periodic table to add the values.
Na2CO3= (2 x 23.0) + 12.0 + (3 x 16.0)= 106 g/mol
H2O= 10 x [ (2 x 1.01 ) + (16.0) ]= 180.2 g/mol
the total molar mass is 106 + 180.2 = 286.2 g/mol
the percentage of water you can find by doing "parts over the whole"
H2O%= 180.2 / 286.2 X 100= 63.0%
Answer:
A. Reference blank
B. Cuvettes
C. Transmittance
D. Absorbance
E. Wavelength
Explanation:
A reference blank is a sample prepared using the solvent and any other chemicals in the sample solutions, but not the absorbing substance.
A square-shaped container, typically made of quartz, designed to hold samples in a spectrophotometer is known as Cuvettes.
A measurement of the amount of light that passes through a sample or percentage of light transmitted by the sample, with the respective intensities of the incident and transmitted beams is called Transmittance.
The measurement of the amount of light taken in by a sample is known as Absorbance
The wavelength is also the distance travelled by the wave during a period of oscillation. In spectrophotometry, the unit is inversely proportional to energy and commonly measured in nanometers
Well, there is kinetic energy when the object is in motion. But it will stop eventually because that energy is converted into thermal energy, or heat.
Answer:
6.78 × 10⁻³ L
Explanation:
Step 1: Write the balanced equation
Mg₃N₂(s) + 3 H₂O(g) ⇒ 3 MgO(s) + 2 NH₃(g)
Step 2: Calculate the moles corresponding to 10.2 mL (0.0102 L) of H₂O(g)
At STP, 1 mole of H₂O(g) has a volume of 22.4 L.
0.0102 L × 1 mol/22.4 L = 4.55 × 10⁻⁴ mol
Step 3: Calculate the moles of NH₃(g) formed from 4.55 × 10⁻⁴ moles of H₂O(g)
The molar ratio of H₂O to NH₃ is 3:2. The moles of NH₃ produced are 2/3 × 4.55 × 10⁻⁴ mol = 3.03 × 10⁻⁴ mol.
Step 4: Calculate the volume corresponding to 3.03 × 10⁻⁴ moles of NH₃
At STP, 1 mole of NH₃(g) has a volume of 22.4 L.
3.03 × 10⁻⁴ mol × 22.4 L/mol = 6.78 × 10⁻³ L