Answer:
<em>There will be an increase in potential difference.</em>
Explanation:
As we know that the potential difference depends upon the capacitance.
ΔV = Q/C
When battery is disconnected the charge remains constant on the plates but the capacitance decreases. As the capacitance has an inverse relation with the potential difference, there will be an increase in it.
In addition to that the potential difference can also be defined as the product of field and distance between the plates. As the charge is constant so the field is constant. Upon increasing the separation between the plates the potential difference will also increased.
Answer:
- solution,
- Given
- load =400N
- ld=0.2m
- ed=0.6m
- effort =150N
Explanation:
efficiency =output work/input work ×100%
l×ld/e×ed×100%
400×0.2/150×0.6×100%
80/90×100%
88.89%ans
Answer:
Amplitude.
Explanation:
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In Science, there are two (2) types of wave and these include;
I. Electromagnetic waves: it doesn't require a medium for its propagation and as such can travel through an empty space or vacuum. An example of an electromagnetic wave is light.
II. Mechanical waves: it requires a medium for its propagation and as such can't travel through an empty space or vacuum. An example of a mechanical wave is sound.
An amplitude can be defined as a waveform that's measured from the center line (its origin or equilibrium position) to the bottom of a trough or top of a crest.
Hence, an amplitude is a word that describes the maximum displacement a point moves from its rest position when a wave passes.
On a graph, the vertical axis (y-axis) is the amplitude of a waveform and this simply means that, it's measured vertically.
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.