Answer:
497.00977 N
3742514.97005
Explanation:
= Density of water = 1000 kg/m³
C = Drag coefficient = 0.09
v = Velocity of dolphin = 7.5 m/s
r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m
A = Area
Drag force
The drag force on the dolphin's nose is 497.00977 N
at 20°C
= Dynamic viscosity =
Reynold's Number
The Reynolds number is 3742514.97005
Gravitational force = G · (mass₁) · (mass₂) / (distance)
(distance²) = G · (mass₁) · (mass₂) / (Gravitational force)
G = 6.67 x 10⁻¹¹ n-m² / kg² (the "gravitational constant")
Distance² = (6.67 x 10⁻¹¹ n-m² / kg²) (28,500 kg) (2.2 x 10⁸ kg) / (39 N)
Distance² = (6.67 · 28,500 · 2.2 x 10⁻³ N-m²) / (39N)
Distance² = (418.209 N-m²) / (39N)
Distance² = 10.72 m²
<em>Distance = 3.275 meters</em>
An absurd scenario, but that's by golly what the math says with the numbers provided. I guess it's a teeny tiny planet orbiting 3.275 meters outside a teeny tiny black hole.
Answer:
Measurements are used to describe quantitatively real-life situations
Explanation:
Measurement refers to the act of assigning a number (with a unit) to a characteristic of an object or an event.
For example: when we want to measure the size of an object, we can use a rule to measure its length, and we assign a number with a unit for that quantity (for example, 5 cm). In this case, we have done a measurement.
Measurements are used by scientists in order to understand the natural worlds. In fact, without measurements it would be impossible to describe phenomena of the real world quantitatively: it would be only possible to describe them qualitatively, and therefore it would not be possible for instance to derive mathematical laws that describe those phenomena.
Answer:
Explanation:
Animal cells and plant cells share the common components of a nucleus, cytoplasm, mitochondria and a cell membrane. Plant cells have three extra components, a vacuole, chloroplast and a cell wall.