Answer:
15.32°
Explanation:
We have given the wavelength
Diffraction grating is 1460 lines per cm
So (as 1 m=100 cm )
For maximum diffraction
here m is order of diffraction
So
The unit of acceleration would be m/s² :)
Answer:
Explanation:
Magnitude of force per unit length of wire on each of wires
= μ₀ x 2 i₁ x i₂ / 4π r where i₁ and i₂ are current in the two wires , r is distance between the two and μ₀ is permeability .
Putting the values ,
force per unit length = 10⁻⁷ x 2 x i x 2i / ( 6 x 10⁻³ )
= .67 i² x 10⁻⁴
force on 3 m length
= 3 x .67 x 10⁻⁴ i²
Given ,
8 x 10⁻⁶ = 3 x .67 x 10⁻⁴ i²
i² = 3.98 x 10⁻²
i = 1.995 x 10⁻¹
= .1995
= 0.2 A approx .
2 i = .4 A Ans .
The options are;
a. V2 equals 2V1.
b. V2 equals (V1)/2.
c. V2 equals V1.
d. V2 equals (V1)/4.
e. V2 equals 4V1.
Answer:
Option A: V2 equals 2V1
Explanation:
Since the flow is steady, then we can say;
mass flow rate at input = mass flow rate at output.
Formula for mass flow rate is;
m' = ρVA
Thus;
At input;
m'1 = ρ1•V1•A1
At output;
m'2 = ρ2•V2•A2
So, m'1 = m'2
Now, we are told that the density of the fluid decreases to half its initial value.
Thus; ρ2 = (ρ1)/2
Since m'1 = m'2, then;
ρ1•V1•A1 = (ρ1)/2•V2•A2
Now, the pipe is uniform and thus the cross section doesn't change. Thus;
A1 = A2
We now have;
ρ1•V1•A1 = (ρ1)/2•V2•A1
A1 and ρ1 will cancel out to give;
V1 = (V2)/2
Thus, V2 = 2V1