For these questions to be true and the equation of the tangent to have an equal y to the equation of the parabola i guess there has to be a "c" and in that case integrate the equation of the tangent you will have a = 5 and b = -18 then you substitute in the equation of the parabola with the point you have you will find that "c" = 21 and so the equation of the parabola becomes y = 5x^2 - 18 x +21
Answer:
Options (2) and (3)
Step-by-step explanation:
Let,
-8 + 8i√3 = a² + b²i² + 2abi
-8 + 8i√3 = a² - b² + 2abi
By comparing both the sides of the equation,
a² - b² = -8 -------(1)
2ab = 8√3
ab = 4√3 ----------(2)
a =
By substituting the value of a in equation (1),
48 - b⁴ = -8b²
b⁴ - 8b² - 48 = 0
b⁴ - 12b² + 4b² - 48 = 0
b²(b² - 12) + 4(b² - 12) = 0
(b² + 4)(b² - 12) = 0
b² + 4 = 0 ⇒ b = ±√-4
b = ± 2i
b² - 12 = 0 ⇒ b = ±2√3
Since, a =
For b = ±2i,
a =
=
=
But a is real therefore, a ≠ ±2i√3.
For b = ±2√3
a =
a = ±2
Therefore, (a + bi) = (2 + 2i√3) and (-2 - 2i√3)
Options (2) and (3) are the correct options.
Make the problem r=8-16. Then you will have r=-8, your answer
Answer:
28
Step-by-step explanation:
14x2=28
Therefore x=28
(9-15)/(-2+4)= -6/2 = -3
-3 is the slope