Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration equilibrium constant is
Explanation:
The chemical equation for this decomposition of ammonia is
↔
The initial concentration of ammonia is mathematically represented a
The initial concentration of nitrogen gas is mathematically represented a
So looking at the equation
Initially (Before reaction)
During reaction(this is gotten from the reaction equation )
(this implies that it losses two moles of concentration )
(this implies that it gains 1 moles)
(this implies that it gains 3 moles)
Note : x denotes concentration
At equilibrium
Now since
Now the equilibrium constant is
substituting values
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
Answer:
A 1 liter volumetric flask should be used.
Explanation:
First we <u>convert 166.00 g of KI into moles</u>, using its <em>molar mass</em>:
Molar mass of KI = Molar mass of K + Molar mass of I = 166 g/mol
- 166.00 g ÷ 166 g/mol = 1 mol KI
Then we <u>calculate the required volume</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
Liters = moles / molarity
Magnesium oxide : MgO
Calcium bicarbonate: Ca(HCO3)2
aluminum carbonate: Al2(CO3)3 or C3Al2O9