Answer:
Explanation:
Let T be the tension
For linear motion of hoop downwards
mg -T = ma , m is mass of the hoop . a is linear acceleration of CG of hoop .
For rotational motion of hoop
Torque by tension
T x R , R is radius of hoop.
Angular acceleration be α,
Linear acceleration a = α R
So TR = I α
= I a / R
a = TR² / I
Putting this value in earlier relation
mg -T = m TR² / I
mg = T ( 1 + m R² / I )
T = mg / ( 1 + m R² / I )
mg / ( 1 + R² / k² )
Tension is less than mg or weight because denominator of the expression is more than 1.
Answer:
i. 0.34
ii. 0.4
iii. 1700 w/m²
iv. 2211.36 w/m²
Explanation:
Given that
Irradiation of the plate, G = 2500 w/m²
Reflected rays, p = 500 w/m²
Emissive power, E = 1200 w/m²
See attachment for calculations
Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
a) 3.9 x 10⁻⁵ kg
Explanation:
The amount of mass required to produce the energy can be given by Einstein's formula:
where,
m = mass required = ?
E = Energy produced = 3.5 x 10¹² J
c = speed of light = 3 x 10⁸ m/s
Therefore,
Hence, the correct option is:
<u>a) 3.9 x 10⁻⁵ kg</u>