frequency is equal to number of oscillations or vibrations upon time
therefore,
check picture
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,
This is equal to the change in the bullet's kinetic energy.
If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,
Divide equation (2) by equation (1) and simplify for v<em>₁.</em>
Thus the speed of the bullet is 71 m/s
One side of the mountain that has constant wind and rain blowing onto it, is more likely to catch what is falling than the other side leaving it dryer.
<span>First, she should put the sample in a test tube and place it in a centrifuge. This would cause the red blood cells to move to the bottom because of their higher density. Next, she would be able to decant the plasma and analyze it separately from the red blood cells.</span>
P=IV, where P is power, I is resistance, and V is voltage. Plug in and solve:
P=400(20)
P=8000W
Hope this helps!!