Answer:
PLEASE MARK AS BRAINLIEST!!
Explanation:
ANSWER IS IN THE IMG BELOW
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
Answer:
Mechanical advantage = 3
Explanation:
You exert a 100-N force on a pulley system to lift 300-N.
The mechanical advantage of the system is given by the ratio of output force to the input force.
Here, output force = 300 N and input force = 100 N
Mechanical advantage,
Mechanical advantage is 3 it means that there are 3 sections of rope support. Hence, this is the required solution.
Mass = Volume/Density. The answer is 9.8kg