Answer:
BaO
Explanation:
The barium oxide chemical formula is BaO. The molar mass is 153.33 g/mol. The molecule is formed by one barium cation Ba2+ and one oxide anion O2-. Both ions are bound by one ionic bond.
Explanation:
rbrhrhyhggggsdffffffffffv
Answer:
K I will attempt
Explanation:
a)
b)
1 : 2 : 2 (I don't know if this is what the question wants but it is what I would answer)
c)
Hydrogen because it requires 2 moles of H2 to react with 1 mole of O2
d)
24 moles of water. Look at stoichiometric coefficient. 2:2 means 24 moles you get 24 moles
e)
Oxygen. 2 < 5/2. Remember, 1 mole of O2 requires 2 moles of H2. But 5/2 is still greater than 2
f)
First, let's find out how many moles of water we can get. Since O2 is the limiting reactant, and O2:H2O ratio is 1:2, we will get 4 moles of H2O. Then, we can multiply 4 by Avogadro's number which is to get the number of molecules. We get: 2.41 * 10^24 molecules of water.
The quantity which is equivalent to the product of the absolute index of refraction of water and the speed of light in water system is the speed of light in vacuum.
<h3>What is the speed of light?</h3>
Speed of light is the rate of speed though the light travels. To find the speed of light in any medium, the following formula is used.
Here, (n) is the index of reaction and (c) is the speed of light in the vacuum. The speed of light in the vacuum is almost equal to the 3.0×10⁸ m/s.
Now the quantity which is equivalent to the product of the absolute index of refraction of water and the speed of light in water has to be find out.
The above formula can be written as,
Here, the product of index of refraction and speed of light is equal to the speed of light in vacuum. This will be true for water as well.
Thus, the quantity which is equivalent to the product of the absolute index of refraction of water and the speed of light in water system is the speed of light in vacuum.
Learn more about the speed of light here;
brainly.com/question/104425
#SPJ4
Answer:
T2 = 135.1°C
Explanation:
Given data:
Mass of water = 96 g
Initial temperature = 113°C
Final temperature = ?
Amount of energy transfer = 1.9 Kj (1.9×1000 = 1900 j)
Specific heat capacity of aluminium = 0.897 j/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Now we will put the values in formula.
Q = m.c. ΔT
1900 j = 96 g × 0.897 j/g.°C × T2 - 113°C
1900 j = 86.112 j/°C × T2 - 113°C
1900 j / 86.112 j/°C = T2 - 113°C
22.1°C + 113°C = T2
T2 = 135.1°C