Answer:
The option that maximizes Maggie's taste index is 1 snack bar and 2 ice creams
Explanation:
<u>snack bar</u> <u>ice cream</u>
37 grams 65 grams
120 calories 160 calories
5 grams of fat 10 grams of fat
Maggie wants to consume up to 450 calories and 25 grams of fat, but she needs at least 120 grams of dessert per day. Ice cream taste 95, snack bars 85.
- maximize taste index = [85(37X) + 95(65Y)] / (37X + 65Y)
- 5X + 10Y ≤ 25 ⇒ CONSTRAINT 1
- 120X + 160Y ≤ 450 ⇒ CONSTRAINT 2
- 37X + 65Y ≥ 120 ⇒ CONSTRAINT 3
- X ≥ 0 ⇒ CONSTRAINT 4
- Y ≥ 0 ⇒ CONSTRAINT 5
maximum possible combinations following constraint 1, 4 AND 5:
- option 1: 1 snack bar - 2 ice creams (5 + 20 = 25)
- option 2: 2 snack bars - 1 ice cream (10 + 10 = 20)
- option 3: 3 snack bars - 1 ice cream (15 + 10 = 25)
possible combinations following constraint 2:
- option 1: 1 snack bar - 2 ice creams (120 + 320 = 440)
- option 2: 2 snack bars - 1 ice cream (240 + 160 = 400)
possible combination following constraint 3:
- option 1: 1 snack bar - 2 ice creams (37 + 130 = 167)
- option 2: 2 snack bars - 1 ice cream (74 + 65 = 139)
since we only have two possibilities, we can calculate which one generates the highest taste index
maximize taste index = [85(37X) + 95(65Y)] / (37X + 65Y)
- option 1: 1 snack bar - 2 ice creams = [85(37) + 95(130)] / (37 + 130) = (3,145 + 12,350) / 167 = 92.78
- option 2: 2 snack bars - 1 ice cream = [85(74) + 95(65)] / (74 + 65) = (6,290 + 6,175) / 139 = 89.68