Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
Answer:
It conducts electricity
It conducts heat
Water is needed for rusting
Explanation:
Metals refer to elements that are found towards the left hand side of the periodic table of elements. They are found in groups 1- 13 and few of them are also found at the bottom of groups 14 and 15.
Now these metal have certain properties that are general to all of them. two of these properties listed among the options in the question are;
i) They conduct electricity
ii) They conduct heat
These properties apply to all metals universally.
Rusting is an electrochemical reaction in which hydrated iron III oxide is formed. In the electrochemical reaction, water in intimately involved in the process. Hence; oxygen and water are required for rusting to take place.
Answer:
9 moles of NaNO3 is obtained
Explanation:
The balanced chemical reaction equation for the reaction is;
Al(NO3)3 + 3NaCl-------> 3NaNO3 + AlCl3
Now, we have to determine the limiting reactant. The limiting reactant yields the least amount of NaNO3.
1 mole of Al(NO3)3 yields 3 moles of NaNO3
4 moles of Al(NO3)3 yields 4 * 3/1 = 12 moles of NaNO3
Also,
3 moles of NaCl yields 3 moles of NaNO3
9 moles of NaCl yields 9 * 3/3 = 9 moles of NaNO3
Hence, NaCl is the limiting reactant and 9 moles of NaNO3 is obtained.
Answer:(I didn’t really know where to Wrigh-)
Explanation: Gas bubbles appear after a chemical reaction has occurred and the mixture becomes saturated with gas. The chemical change that creates the gas is completed after the gas bubbles leave the mixture.