The total circuit current at the resonant frequency is 0.61 amps
What is a LC Circuit?
- A capacitor and an inductor, denoted by the letters "C" and "L," respectively, make up an LC circuit, also referred to as a tank circuit, a tuned circuit, or a resonant circuit.
- These circuits are used to create signals at particular frequencies or to receive signals from more complicated signals at particular frequencies.
Q =15 = (wL)/R
wL = 30 ohms = Xl
R = 2 ohms
Zs = R + jXl = 2 +j30 ohms where Zs is the series LR impedance
| Zs | = 30.07 <86.2° ohms
Xc = 1/(wC) = 30 ohms
The impedance of the LC circuit is found from:
Zp = (Zs)(-jXc)/( Zs -jXc)
Zp = (2+j30)(-j30)/(2 + j30-j30) = (900 -j60)2 = 450 -j30 = 451 < -3.81°
I capacitor = 277/-j30 = j9.23 amps
I Zs = 277/(2 +j30) = (554 - j8,310)/904 = 0.61 - j9.19 amps
I net = I cap + I Zs = 0.61 + j0.04 amps = 0.61 < 3.75° amps
Hence, the total circuit current at the resonant frequency is 0.61 amps
To learn more about LC Circuit from the given link
brainly.com/question/29383434
#SPJ4
Chloroplast...................
True
A scientific law only states that an event occurs.
Hope this helps!
Answer:
40000÷40=1000 joules is required to work in 40 seconds
Explanation:
Given that,
Radius R= 2.00
Charge = 6.88 μC
Inner radius = 4.00 cm
Outer radius = 5.00 cm
Charge = -2.96 μC
We need to calculate the electric field
Using formula of electric field
(a). For, r = 1.00 cm
Here, r<R
So, E = 0
The electric field does not exist inside the sphere.
(b). For, r = 3.00 cm
Here, r >R
The electric field is
Put the value into the formula
The electric field outside the solid conducting sphere and the direction is towards sphere.
(c). For, r = 4.50 cm
Here, r lies between R₁ and R₂.
So, E = 0
The electric field does not exist inside the conducting material
(d). For, r = 7.00 cm
The electric field is
Put the value into the formula
The electric field outside the solid conducting sphere and direction is away of solid sphere.
Hence, This is the required solution.