Answer:
a) the change in kinetic energy will be ΔK = -2.516*10¹⁰ J
b) the change in potential energy will be ΔV = 2*(-ΔK) = 5.032*10¹⁰ J
c) the work required will be W= ΔE= -ΔK = 2.516*10¹⁰ J
Explanation:
since the the rocket is in a stable circular orbit the velocity should be
F gravity = m*a
where F gravity is given by Newton's gravitational law ( if we ignore relativistic effects)
F gravity = M*m*G/R²
since a= radial acceleration , for circular motion:
a=v²/R
then
F gravity = m*a
M*m*G/R²= m*v²/R
thus
M*G/R=v²
M*G/R=v²
for a change in velocity
v₁²= M*G/R₁ and v₂²= M*G/R₂
assuming
mass of the earth M= 5.972 × 10^24 kg
gravitational constant= G= 6.674 * 10⁻¹¹ m³ kg⁻¹ s ⁻²
then
Kinetic energy in 1= K₁ = 1/2* m * v₁² =1/2*m*M*G/R₁ = 1/2* 5.00*10³ kg* 5.972 *10²⁴ kg * 6.674 * 10⁻¹¹ m³ kg⁻¹ s ⁻² / (7.20 * 10⁶m ) = 1.384*10¹¹ J
knowing that
K₁ = 1/2* m * v₁² and K₂ = 1/2* m * v₂²
dividing both equations
K₂/K₁= v₂²/v₁² = R₁/R₂
then
K₂ = K₁ * R₁/R₂ =
the change in kinetic energy will be
ΔK = K₂-K₁ = K₁ * R₁/R₂- K₁ = K₁ *(R₁/R₂-1)
replacing values
ΔK = K₁ *(R₁/R₂-1) = 1.384*10¹¹ J * [ (7.20 * 10⁶m)/ (8.80 * 10⁶m) -1 ] = -2.516*10¹⁰ J
ΔK = -2.516*10¹⁰ J
therefore the kinetic energy decreases
the change in potential energy is
ΔV = M*m*G/R₁ - M*m*G/R₂ = m*v₁² - m*v₂² = 2*(-ΔK) = 2* -(-2.516*10¹⁰ J) = 5.032*10¹⁰ J
ΔV = 2*(-ΔK) = 5.032*10¹⁰ J
therefore the potential energy increases
the work required will be
W= ΔE= ΔK + ΔV = ΔK + 2*(-ΔK) = -ΔK = 2.516*10¹⁰ J