It has to due with numbers so I would say the last one!
Answer:
The mass of the mud is 3040000 kg.
Explanation:
Given that,
length = 2.5 km
Width = 0.80 km
Height = 2.0 m
Length of valley = 0.40 km
Width of valley = 0.40 km
Density = 1900 Kg/m³
Area = 4.0 m²
We need to calculate the mass of the mud
Using formula of density
Where, V = volume of mud
= density of mud
Put the value into the formula
Hence, The mass of the mud is 3040000 kg.
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer:
Amy's speed is 2/3 faster than Bill's
Explanation:
can't believe you don't know how to do this.
Answer:
Explanation:
At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon
so we will have
now we have
so we will have
Now by energy conservation