Tan = opp/adj
Tan A = 16/12
Answer:
9 - 7x - x²
Step-by-step explanation:
-4x+2x2-x²+5-3x = -4x-3x+2x2+5-x²
I arranged the like terms together so it is easier to do the calculations.
-4x-3x+2x2+5-x² = -7x+4+5-x²
Simplify.
-7x+4+5-x² = 9-7x-x²
Answer:
2(2/5x+2)= 2*2/5x + 2*2= 4/5x+4
The consecutive positive integers would be: x and (x+1),
We would have to solve the following equation to find these numbers:
x(x+1)-[x+(x+1)]=29
x²+x-2x-1=29
x²-x-30=0
x=[1⁺₋√(1+120)]/2
x=(1⁺₋11)/2
We have two possible solutions:
x₁=(1-11)/2=-5 then: (x+1)=-5+1=-4 This is not the solution.
x₂=(1+11)/2=6 then: (x+1)=6+1=7 This solution is right.
Answer: the numbers would be 6 and 7.
Step-by-step explanation:
let us give all the quantities in the problem variable names.
x= amount in utility stock
y = amount in electronics stock
c = amount in bond
“The total amount of $200,000 need not be fully invested at any one time.”
becomes
x + y + c ≤ 200, 000,
Also
“The amount invested in the stocks cannot be more than half the total amount invested”
a + b ≤1/2 (total amount invested),
=1/2(x + y + c).
(x+y-c)/2≤0
“The amount invested in the utility stock cannot exceed $40,000”
a ≤ 40, 000
“The amount invested in the bond must be at least $70,000”
c ≥ 70, 000
Putting this all together, our linear optimization problem is:
Maximize z = 1.09x + 1.04y + 1.05c
subject to
x+ y+ c ≤ 200, 000
x/2 +y/2 -c/2 ≤ 0
≤ 40, 000,
c ≥ 70, 000
a ≥ 0, b ≥ 0, c ≥ 0.