Answer:
D
Step-by-step explanation:
C=2PI R
Radius is 24
pi is 3.14
Then you just solve it which turns out to be 150.8
The simulation of the medicine and the bowler hat are illustrations of probability
- The probability that the medicine is effective on at least two is 0.767
- The probability that the medicine is effective on none is 0
- The probability that the bowler hits a headpin 4 out of 5 times is 0.3281
<h3>The probability that the medicine is effective on at least two</h3>
From the question,
- Numbers 1 to 7 represents the medicine being effective
- 0, 8 and 9 represents the medicine not being effective
From the simulation, 23 of the 30 randomly generated numbers show that the medicine is effective on at least two
So, the probability is:
p = 23/30
p = 0.767
Hence, the probability that the medicine is effective on at least two is 0.767
<h3>The probability that the medicine is effective on none</h3>
From the simulation, 0 of the 30 randomly generated numbers show that the medicine is effective on none
So, the probability is:
p = 0/30
p = 0
Hence, the probability that the medicine is effective on none is 0
<h3>The probability a bowler hits a headpin</h3>
The probability of hitting a headpin is:
p = 90%
The probability a bowler hits a headpin 4 out of 5 times is:
P(x) = nCx * p^x * (1 - p)^(n - x)
So, we have:
P(4) = 5C4 * (90%)^4 * (1 - 90%)^1
P(4) = 0.3281
Hence, the probability that the bowler hits a headpin 4 out of 5 times is 0.3281
Read more about probabilities at:
brainly.com/question/25870256
Answer:
2 times the square root of 10
Step-by-step explanation:
If you make a right triangle and solve for the hypotenuse (the distance between P1 and P2), you will get 2 times the square root of 10.
Please mark this brainliest.
Xy = 1 for all points.
We are going to demonstrate this affirmation:
(2) * (0.5) = 1
(1) * (1) = 1
(0.5) * (2) = 1
Therefore, the relationship between the ordered pairs is inverse.
The relationship between the ordered pairs is:
y = 1 / x
Answer:
xy = 1 for all points.
X=y-a
by simplifying both sides of the equation then isolating the variabke