Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer A: Connect a wire coil to an ammeter. Move a bar magnet into and out of the wire coil as you observe the ammeter.
The correct option is FLUORINE AND COPPER.
An ionic compound is usually formed by the combination of a metal and a non metal, the metal usually act as an electron donor while the non metal act as an electron acceptor. Thus, in ionic compounds, there is total transfer of electrons from the metal to the non metal. In the question given here, copper is the metal while the fluorine is the non metal.<span />
Answer:
Sulfur, phosphorus, silicon, and chlorine are common examples of elements that form an expanded octet.
Explanation:
Phosphorus pentachloride (PCl5) and sulfur hexafluoride (SF6) are examples of molecules that deviate from the octet rule by having more than 8 electrons around the central atom
Answer:
look at the photo........................