Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
C7H16, where C=12.01, and H=1.01, so the weight of the molecule would be 7(12.01)+16(1.01), or 100.23. The percentage of carbon would be found by ((7*12.01)/100.23)*100=83.88% Carbon
((16*1.01)/100.23)*100=16.12% Hydrogen
Answer: 3.75 M
Explanation:
400 mL = 0.4 L
NaOH has a molar mass of around 40 g/mol.
= 1.5 moles
Molarity = = 3.75 M
Answer:
0.681 atm
Explanation:
To solve this problem, we make use of the General gas equation.
Given:
P1 = 785 torr
V1 = 2L
T1 = 37= 37 + 273.15 = 310.15K
P2 = ?
V2 = 3.24L
T2 = 58 = 58+273.15 = 331.15K
P1V1/T1 = P2V2/T2
Now, making P2 the subject of the formula,
P2 = P1V1T2/T1V2
P2 = [785 * 2 * 331.15]/[310.15 * 3.24]
P2 = 515.715 Torr
We convert this to atm: 1 torr = 0.00132 atm
515.715 Torr = 515.715 * 0.00132 = 0.681 atm