Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
Answer:
5.3 m/s
Explanation:
First, find the time it takes for him to fall 7m.
y = y₀ + v₀ t + ½ at²
0 = 7 + (0) t + ½ (-9.8) t²
0 = 7 − 4.9 t²
t ≈ 1.20 s
Now find the velocity he needs to travel 6.3m in that time.
x = x₀ + v₀ t + ½ at²
6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²
v₀ ≈ 5.27 m/s
Rounded to two significant figures, the man must run with a speed of 5.3 m/s.
<span>6.67 metros por segundo
~ Haga 800/120 que equivale a 6.67 porque hay 60 segundos en un minuto y hay dos minutos, entonces 60 veces 2 es igual a 180, luego configure su problema
</span>
Espero que esto te ayude:)
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Question 7:
</h2>
The graph of
• The I-V for Ohmic Metal wire conductor at constant temperature always shows a straight line between the Current(I) plotted at Y axis and Voltage(V) plotted at X axis. Picture 1
• The I-V graph for Diode shows that first the current is zero but as we increase the potential difference(voltage), it results in the increase in the current. Picture 2
<h2>_____________________________________
</h2><h2>Question 8:
</h2>
A diode is a device that allows current to flow in only one direction.
Forward Bias, When a diode is forward bias (a voltage in the "forward" direction) then the P-side of the diode is attached to the positive terminal and N-side is fixed to the negative side of the battery which is connected, current flows freely through the device. The forward bias decreases the thickness of potential barrier(The potential barrier barrier in which the charge requires additional force for crossing the region)
Reverse Bias, When a diode is Reverse bias(a voltage in the "backward direction) then the P-side of the diode is connected to the negative terminal and N-side is connected to the positive terminal of the battery which is connected. The reverse bias increases the thickness of the potential barrier resulting in the flow of no current.
The Forward bias decreases the resistance of the diode whereas the reversed bias increases the resistance of the diode. As in forward biasing the current is easily flowing through the circuit whereas reverse bias does not allow the current to flow through it.
<h2>_____________________________________
</h2><h2>Best Regards,
</h2><h2>'Borz'
</h2>