Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles
1:3 hope DAT helps #ZedTheZom
Pure magnesium's formula would just be Mg because all elements except for 7 nonmetals are just left alone when they are by themselves in a formula. The 7 diatomic elements( means they have to have two of them without another element attached to it aka. a subscript two after it when it's by itself) are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. An easy way to remember the diatomic seven is that when looking at a periodic table if you trace over them from nitrogen over to fluorine and down to iodine all of those elements are diatomic + hydrogen.
And your unbalanced and balanced equations are correct.
(sorry I went on a tangent with the diatomic rules hopefully it will help you in the future though)
Answer:
16Ag + 2C2 ---> 4 Ag4C
Explanation:
Ag + C2 ----> AgC2
The valence of Ag is one
Valence of Carbon is four
A balanced equation would be
16Ag + 2C2 ---> 4 Ag4C
Answer:
Neutrons = ( Atomic mass – Atomic number ) ( A–Z )
Protons and Electrons are equal to the atomic number
For example Neon,
Mass number (A) = 20
Atomic Number (Z) = 10
Number of Protons = 10
Number of Electrons = 10
Number of Neutrons = ( A–Z ) = 10
Electronic distribution :
K= 2
L= 8